\(8\sqrt2^n\)
\(2^{(n+2)}\sqrt2\)
\(\sqrt2^{(n+3)}\)
\(8n\sqrt2\)
Correct answer is B
8√2, 16√2, 32√2, ..
\(a = 8\sqrt2; r =\frac{T_2}{T_1}=\frac{16\sqrt2}{8\sqrt2}=2\)
\(T_n=ar^{n-1}\)
\(T_n=8\sqrt2 \times 2^{n-1}\)
\(T_n=2^3\times2^{n-1}\times\sqrt2\)
\(T_n=2^{3+n-1}\times\sqrt2\)
\(\therefore T_n= 2^{(n+2)}\sqrt2\)
Given that \(f(x) = 3x^{2} - 12x + 12\) and \(f(x) = 3\), find the values of x....
Find the minimum value of \(y = 3x^{2} - x - 6\)....
If \(log_{y}\frac{1}{8}\) = 3, find the value of y....
If \((x - 5)\) is a factor of \(x^3 - 4x^2 - 11x + 30\), find the remaining factors....
Simplify \(\frac{\sqrt{128}}{\sqrt{32} - 2\sqrt{2}}\)...
Which of the following sets is equivalent to \((P \cup Q) \cap (P \cup Q')\)?...
\(P = {x : 1 \leq x \leq 6}\) and \(Q = {x : 2 < x < 9}\) where \(x \in R\), find \(P \cap Q\)...