\(\frac{1}{\sqrt{29}}(2i + 5j)\)
\(\frac{1}{\sqrt{29}}(-2i + 5j)\)
\(\frac{1}{29}(2i - 5j)\)
\(\frac{1}{29}(-2i - 5j)\)
Correct answer is B
The unit vector, \(\hat{n}\) is given by \(\hat{n} = \frac{\overrightarrow{r}}{|\overrightarrow{r}|}\)
= \(\frac{(-2i + 5j)}{\sqrt{(-2)^{2} + 5^{2}}} = \frac{(-2i + 5j)}{\sqrt{29}}\)
= \(\frac{1}{\sqrt{29}}(-2i + 5j)\)
Given that P = {x : 1 \(\geq\) x \(\geq\) 6} and Q = {x : 2 < x < 10}. Where x are intege...
Given that \(P = \begin{pmatrix} 3 & 4 \\ 2 & x \end{pmatrix}; Q = \begin{pmatrix} 1 & 3...
For what values of m is \(9y^{2} + my + 4\) a perfect square?...
Evaluate \(4p_2 + 4C_2 - 4p_3\)...
Find the derivative of \(\sqrt[3]{(3x^{3} + 1}\) with respect to x....