\(\frac{1}{5}\)(-3i - 4j)
\(\frac{1}{5}\)(-3i + 4j)
\(\frac{1}{5}\)(3i - 4j)
\(\frac{1}{5}\)(3i + 4j)
Correct answer is C
Resultant
(- 2i - 3j) + (5i - j)
= 3i - 4j
Unit vector
= \(\frac{3i - 4j}{|3i - 4j|} = \frac{3i - 4j}{\sqrt{3i } + (-4)}\)
= \(\frac{3i - 4j}{\sqrt{25}}\)
= \(\frac{3i - 4j}{5}\)
Given that \(P = \begin{pmatrix} 4 & 9 \end{pmatrix}\) and \(Q = \begin{pmatrix} -1 & -2 \\ ...
Evaluate \(\lim \limits_{x \to 1} \frac{1 - x}{x^{2} - 3x + 2}\)...
If \(f(x) = \frac{4}{x} - 1, x \neq 0\), find \(f^{-1}(7)\)....
If \(P = {x : -2 < x < 5}\) and \(Q = {x : -5 < x < 2}\) are subsets of \(\mu = {x : -5 ...
Solve: \(\sin \theta = \tan \theta\)...