n - 5
n - 3
2n - 1
2n - 3
Correct answer is D
\(\frac{^{n}P_{3}}{^{n}C_{2}} + ^{n}P_{0}\)
\(\frac{^{n}P_{3}}{^{n}C_{2}} = \frac{n!}{(n - 3)!} ÷ \frac{n!}{(n - 2)! 2!}\)
\(\frac{n!}{(n - 3)!} \times \frac{(n - 2)(n - 3)! 2!}{n!} = 2n - 4\)
\(^{n}P_{0} = \frac{n!}{(n - 0)!} = 1\)
\(\frac{^{n}P_{3}}{^{n}C_{2}} + ^{n}P_{0} = 2n - 4 + 1 = 2n - 3\)
The table shows the operation * on the set {x, y, z, w}. * X Y Z W X Y Z X W ...
Express \(\frac{2}{3 - \sqrt{7}} \text{ in the form} a + \sqrt{b}\), where a and b are integers....
Find the unit vector in the direction of the vector \(-12i + 5j\)...
Which of the following binary operations is not commutative? ...
If \(y^{2} + xy - x = 0\), find \(\frac{\mathrm d y}{\mathrm d x}\)....
Solve: \(4(2^{x^2}) = 8^{x}\)...
Find the coefficient of \(x^{4}\) in the binomial expansion of \((2 + x)^{6}\)...