\(\frac{x + 3}{x - 2},x ≠ 2\)
\(\frac{x - 3}{x + 2},x ≠ -2\)
\(\frac{3x - 2}{x+1},x ≠ -1\)
\(\frac{3x + 2}{x - 1},x ≠ 1\)
Correct answer is D
\(f :x→\frac{x + 2}{x - 3},x ≠ 3, f = ?\)
Let \(f :x=y\)
\(y=\frac{x + 2}{x - 3}\)
\(=x+2=y(x-3)\)
\(=x-xy=-3y-2\)
\(=x(1-y)=-3y-2\)
\(=x=\frac{-3y - 2}{1 - y}=\frac{-(3y + 2)}{- (y - 1)}\)
\(=x=\frac{3y + 2}{y - 1}\)
\(∴f ^{-1} : x=\frac{3x + 2}{x - 1},x ≠ 1\)
Find the equation of the line passing through (0, -1) and parallel to the y- axis. ...
Simplify \(2\log_{3} 8 - 3\log_{3} 2\)...
Face 1 2 3 4 5 6 Frequency 12 18 y 30 2y 45 Given the table above as t...
If \(B = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}\), find \(B^{-...
Evaluate \(\lim \limits_{x \to 1} \frac{1 - x}{x^{2} - 3x + 2}\)...
If \(y = 2(2x + \sqrt{x})^{2}\), find \(\frac{\mathrm d y}{\mathrm d x}\)....