12m
16m
64m
96m
Correct answer is B
V = 3t\(^2\) - 6t
\(\frac{ds}{dt} = 3t^2 - 6t\)
s = \(\int 3t^2 - 6t\)
s = \(\frac{3t^3}{3} - \frac{6t^2}{2} + k\)
s = t\(^3\) - 3t\(^2\) + k
s = 0, t = 0
s = t\(^3\) - 3t\(^2\)
s = 4\(^3\) - 3t\(^2\)
s = 4\(^3\) - 3(4)\(^2\)
= 64 - 48 = 16m
Evaluate \(\int_{1}^{2} \frac{4}{x^{3}} \mathrm {d} x\)...
The midpoint of M(4, -1) and N(x, y) is P(3, -4). Find the coordinates of N. ...
Find the direction cosines of the vector \(4i - 3j\)....
If f(x-1) = x\(^3\) + 3x\(^2\) + 4x - 5, find f(2)...
How many ways can 6 students be seated around a circular table? ...