\(\frac{1}{3}\)
\(\frac{4}{9}\)
\(\frac{5}{9}\)
\(1\)
Correct answer is A
Differentiate distance twice to get the acceleration and then equate to get p.
\(s = 7 + pt^{3} + t^{2}\)
\(\frac{\mathrm d s}{\mathrm d t} = v(t) = 3pt^{2} + 2t\)
\(\frac{\mathrm d v}{\mathrm d t} = a(t) = 6pt + 2\)
\(a(3) = 6p(3) + 2 = 8 \implies 18p = 8 - 2 = 6\)
\(p = \frac{6}{18} = \frac{1}{3}\)
Simplify \(\frac{1 + \sqrt{8}}{3 - \sqrt{2}}\)...
If \(y = \frac{1+x}{1-x}\), find \(\frac{dy}{dx}\)....
Find the derivative of \(\sqrt[3]{(3x^{3} + 1}\) with respect to x....
If \(P = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}\), find \((P^{2} + P)\)....
A body is kept at rest by three forces \(F_{1} = (10N, 030°), F_{2} = (10N, 150°)\) and \(F_...
Find the variance of 1, 2, 0, -3, 5, -2, 4....
\(f(x) = p + qx\), where p and q are constants. If f(1) = 7 and f(5) = 19, find f(3)....