\(x < -\frac{3}{2}\) or \(x > 5\)
\(x < -5\) or \(x > \frac{3}{2}\)
\(-\frac{3}{2} < x < 5\)
\(-5 < x < \frac{3}{2}\)
Correct answer is B
\(2x^{2} + 7x - 15 > 0 \implies 2x^{2} - 3x + 10x - 15 > 0\)
\(x(2x - 3) + 5(2x - 3) > 0\)
\((x + 5)(2x - 3) > 0\)
For their product to be positive, they are either both +ve or -ve.
\(x + 5 > 0 \implies x > -5\)
\(2x - 3 > 0 \implies 2x > 3\)
\(x > \frac{3}{2}\)
Check:
\(x > -5: x = -3\)
\(2(-3)^{2} + 7(-3) - 15 = 18 - 21 - 15 = -18 < 0\) (Not satisfied)
\(\therefore x < -5\)
\(x > \frac{3}{2}: x = 2\)
\(2(2^{2}) + 7(2) - 15 = 8 + 14 - 15 = 7 > 0\) (Satisfied)
The position vectors of A and B are (2i + j) and (-i + 4j) respectively; find |AB|. ...
The function \(f : F \to R\) = \(f(x) = \begin{cases} 3x + 2 : x > 4 \\ 3x - 2 : x = 4 \\ ...
If f(x-1) = x\(^3\) + 3x\(^2\) + 4x - 5, find f(2)...
Age(in years) 1 - 5 6 - 10 11 - 15 Frequency 3 5 2 Calculate the standard de...
If \(\sqrt{x} + \sqrt{x + 1} = \sqrt{2x + 1}\), find the possible values of x....