\(\frac{x^{7}}{8}\)
\(\frac{7x^{6}}{16}\)
\(\frac{7x^{5}}{4}\)
\(\frac{35x^{4}}{8}\)
Correct answer is B
\((\frac{x}{2} - 1)^{8} = ^{8}C_{8}(\frac{x}{2})^{8}(-1)^{0} + ^{8}C_{7}(\frac{x}{2})^{7}(-1)^{1} + ^{8}C_{6}(\frac{x}{2})^{6}(-1)^{2} + ...\)
\(\text{The third term in the expansion =} ^{8}C_{6}(\frac{x}{2})^{6}(-1)^{2}\)
= \(\frac{8!}{6!2!}(\frac{x^{6}}{64})(1) \)
= \(28 \times \frac{x^{6}}{64} = \frac{7x^{6}}{16}\)
If \(\frac{^{8}P_{x}}{^{8}C_{x}} = 6\), find the value of x....
Solve 6 sin 2θ tan θ = 4, where 0º < θ < 90º ...
Find the coefficient of \(x^{4}\) in the binomial expansion of \((2 + x)^{6}\)...
Find the value of p for which \(x^{2} - x + p\) becomes a perfect square. ...
Given that \(f(x) = 2x^{3} - 3x^{2} - 11x + 6\) and \(f(3) = 0\), factorize f(x)...
Find the area of the circle whose equation is given as \(x^{2} + y^{2} - 4x + 8y + 11 = 0\)...
Simplify \(\frac{\sqrt{3}}{\sqrt{3} -1} + \frac{\sqrt{3}}{\sqrt{3} + 1}\)...
Find the stationary point of the curve \(y = 3x^{2} - 2x^{3}\)....
Given that \(r = 3i + 4j\) and \(t = -5i + 12j\), find the acute angle between them....