14.3°
55.9°
59.5°
75.6°
Correct answer is C
→r.→t=|→r||→t|cosθ
→r.→t=(3i+4j).(−5i+12j)=−15+48=33
|→r|=√32+42=√25=5
|\overrightarrow{t}| = \sqrt{(-5)^{2} + 12^{2}| = \sqrt{169} = 13
cosθ=→r.→t|→r||→t|
cosθ=335×13=3365
\theta = \cos^{-1} {\frac{33}{65}} \approxeq 59.5°
If \(\begin{vmatrix} k & k \\ 4 & k \end{vmatrix} + \begin{vmatrix} 2 & 3 \\...
The lines 2y + 3x - 16 = 0 and 7y - 2x - 6 = 0 intersect at point P. Find the coordinates of...
Simplify \frac{^{n}P_{4}}{^{n}C_{4}}...
Given that \sin x = \frac{-\sqrt{3}}{2} and \cos x > 0, find x...
Given that R = (4, 180°) and S = (3, 300°), find the dot product...
If y = 4x - 1, list the range of the domain {-2 \leq x \leq 2}, where x is an integer....
Given that P = \begin{pmatrix} y - 2 & y - 1 \\ y - 4 & y + 2 \end{pmatrix} and |P| = -2...