\(x^{2} + y^{2} - 5x + 3 = 0\)
\(x^{2} + y^{2} - 2x - 6y - 13 = 0\)
\(x^{2} + y^{2} - x + 5y - 6 = 0\)
\(x^{2} + y^{2} - x - y - 8 = 0\)
Correct answer is D
Given the endpoints of the diameter |EF|, the midpoint is the centre of the circle
= \((\frac{-2 + 3}{2} , \frac{-1 + 2}{2}) = (\frac{1}{2} , \frac{1}{2})\)
The radius is the distance from the centre to any point on the circle. Using \((\frac{1}{2}, \frac{1}{2})\) and \((3, 2)\);
\(r^{2} = (3 - \frac{1}{2})^{2} + (2 - \frac{1}{2})^{2} = \frac{25}{4} + \frac{9}{4}\)
\(r^{2} = \frac{34}{4}\)
The equation of a circle is given as:
\((x - a)^{2} + (y - b)^{2} = r^{2}\), (a, b) as the centre of the circle.
\(= (x - \frac{1}{2})^{2} + (y - \frac{1}{2})^{2} = \frac{34}{4}\)
\(x^{2} - x + \frac{1}{4} + y^{2} - y + \frac{1}{4} = \frac{17}{2}\)
= \(x^{2} - y^{2} - x - y - 8 = 0\)
The position vectors of A and B are (2i + j) and (-i + 4j) respectively; find |AB|. ...
Find the unit vector in the direction opposite to the resultant of forces. F\(_1\) =...
Given that \(f '(x) = 3x^{2} - 6x + 1\) and f(3) = 5, find f(x)....
Age in years 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 Frequency 6 8 14 10 12 ...
Find the equation of the normal to the curve y= 2x\(^2\) - 5x + 10 at P(1, 7)...
Simplify \(\frac{x^{3n + 1}}{x^{2n + \frac{5}{2}}(x^{2n - 3})^{\frac{1}{2}}}\)...
Find the third term in the expansion of \((a - b)^{6}\) in ascending powers of b....
In how many ways can four Mathematicians be selected from six ? ...