\(-15a^{4}b^{2}\)
\(15a^{4}b^{2}\)
\(-15a^{3}b^{3}\)
\(15a^{3}b^{3}\)
Correct answer is B
\((a - b)^{6} = ^{6}C_{0}(a)^{6}(-b)^{0} + ^{6}C_{1}(a)^{5}(-b)^{1} + ^{6}C_{2}(a)^{4}(-b)^{2} + ...\)
Third term = \(^{6}C_{2}(a)^{4}(-b)^{2} = \frac{6!}{(6-2)! 2!}(a^4)(b^2)\)
= \(15a^{4}b^{2}\)
Integrate \((x - \frac{1}{x})^{2}\) with respect to x....
If (x - 3) is a factor of \(2x^{2} - 2x + p\), find the value of constant p....
Given that P = {x : 1 \(\geq\) x \(\geq\) 6} and Q = {x : 2 < x < 10}. Where x are intege...
Given that \(\sin x = \frac{-\sqrt{3}}{2}\) and \(\cos x > 0\), find x...