-12
-6
3
6
Correct answer is A
Using remainder theorem, since x - 3 is a factor, then
given \(2x^{2} - 2x + p\), f(3) = 0
\(2(3^{2}) - 2(3) + p = 0 \implies 18 - 6 = -p\)
\(p = -12\)
If \(\frac{6x + k}{2x^2 + 7x - 15}\) = \(\frac{4}{x + 5} - \frac{2}{2x - 3}\). Find the value ...
Marks 2 3 4 5 6 7 8 No of students 5 7 9 6 3 6 4 The table above sho...
Find the magnitude and direction of the vector \(p = (5i - 12j)\)...
Differentiate \(\frac{x}{x + 1}\) with respect to x...
If \(\frac{^{8}P_{x}}{^{8}C_{x}} = 6\), find the value of x....