\(4(6 + 5\pi)\)
\(4(6 + 2\pi)\)
\(4(3 + 3\pi)\)
\(4(3 + 5\pi)\)
Correct answer is A
The angle subtended by the minor arc = \(\frac{\pi}{3} radians\)
The angle subtended by the major arc = \(2\pi - \frac{\pi}{3} = \frac{5\pi}{3}\)
Perimeter of the major arc = \(r\theta + 2r\)
= \(12 \times \frac{5\pi}{3} + 2(12) = 20\pi + 24\)
= \(4(5\pi + 6)\)
If Un = kn\(^2\) + pn, U\(_1\) = -1, U\(_5\) = 15, find the values of k and p....
In which of the following series can be the formula S = \(\frac{a}{1 - r}\) where a is the firs...
If \(\begin{vmatrix} m-2 & m+1 \\ m+4 & m-2 \end{vmatrix} = -27\), find the value of m...
Given that \(f(x) = 5x^{2} - 4x + 3\), find the coordinates of the point where the gradient is 6....