Find the coordinates of the point which divides the line ...
Find the coordinates of the point which divides the line joining P(-2, 3) and Q(4, 9) internally in the ratio 2 : 3.
\((5\frac{2}{3}, \frac{2}{5})\)
\((\frac{2}{5}, 5\frac{2}{5})\)
\((\frac{2}{5}, 2\frac{2}{5})\)
\((\frac{-2}{5}, 5\frac{2}{5})\)
Correct answer is B
\((x = \frac{nx_{1} + mx_{2}}{n + m}, y = \frac{ny_{1} + my_{2}}{n + m})\)
Given P(-2, 3) and Q(4, 9),
\((\frac{2(4) + 3(-2)}{2 + 3}, \frac{2(9) + 3(3)}{2 + 3})\)
= \((\frac{2}{5}, \frac{27}{5})\)
= \((\frac{2}{5}, 5\frac{2}{5})\)
The gradient of a curve at the point (-2, 0) is \(3x^{2} - 4x\). Find the equation of the curve....
If (2t - 3s)(t - s) = 0, find \(\frac{t}{s}\)...
Evaluate \(\int_{1}^{2} (2 + 2x - 3x^{2}) \mathrm {d} x\)....
If \(2\log_{4} 2 = x + 1\), find the value of x....
Given that \(P = \begin{pmatrix} 3 & 4 \\ 2 & x \end{pmatrix}; Q = \begin{pmatrix} 1 & 3...