3
2
-3
-2
Correct answer is C
\(y = 4x^{3} + kx^{2} - 6x + 4\)
\(\frac{\mathrm d y}{\mathrm d x} = 12x^{2} + 2kx - 6\)
At P(1, m)
\(\frac{\mathrm d y}{\mathrm d x} = 12 + 2k - 6 = 0\) (parallel to the x- axis)
\(6 + 2k = 0 \implies k = -3\)
The table shows the operation * on the set {x, y, z, w}. * X Y Z W X Y Z X W ...
Simplify; \(\frac{\sqrt{5} + 3}{4 - \sqrt{10}}\) ...
Find the value of \(\cos(60° + 45°)\) leaving your answer in surd form...
If \(P = {x : -2 < x < 5}\) and \(Q = {x : -5 < x < 2}\) are subsets of \(\mu = {x : -5 ...
Given that \(f(x) = 3x^{2} - 12x + 12\) and \(f(x) = 3\), find the values of x....
Given that \(\tan x = \frac{5}{12}\), and \(\tan y = \frac{3}{4}\), Find \(\tan (x + y)\)....
Find an expression for y given that \(\frac{\mathrm d y}{\mathrm d x} = x^{2}\sqrt{x}\)...