\(\frac{1}{576}\)
\(\frac{55}{576}\)
\(\frac{77}{576}\)
\(\frac{167}{576}\)
Correct answer is D
\(P(Jide) = \frac{1}{12}; P(\text{not Jide}) = \frac{11}{12}\)
\(P(Atu) = \frac{1}{6}; P(\text{not Atu}) = \frac{5}{6}\)
\(P(Obu) = \frac{1}{8}; P(\text{not Obu}) = \frac{7}{8}\)
\(P(\text{only one of them}) = P(\text{Jide not Atu not Obu}) + P(\text{Atu not Jide not Obu}) + P(\text{Obu not Jide not Atu})\)
= \((\frac{1}{12} \times \frac{5}{6} \times \frac{7}{8}) + (\frac{1}{6} \times \frac{11}{12} \times \frac{7}{8}) + (\frac{1}{8} \times \frac{11}{12} \times \frac{5}{6})\)
= \(\frac{35}{576} + \frac{77}{576} + \frac{55}{576}\)
= \(\frac{167}{576}\)
If \(\frac{^{n}C_{3}}{^{n}P_{2}} = 1\), find the value of n....
If \(x^2+y^2+-2x-6y+5 =0\), evaluate dy/dx when x=3 and y=2....
From the diagram above, which of the following represents the vector V in component form? ...
Find the radius of the circle \(2x^2 + 2y^2 - 4x + 5y + 1 = 0\)...
Find the direction cosines of the vector \(4i - 3j\)....
Solve \(\log_{2}(12x - 10) = 1 + \log_{2}(4x + 3)\)...
Given that \(\sin x = \frac{-\sqrt{3}}{2}\) and \(\cos x > 0\), find x...
Find \(\lim\limits_{x \to 3} \frac{2x^{2} + x - 21}{x - 3}\)....
If cos x = -0.7133, find the values of x between 0\(^o\) and 360\(^o\) ...