8
7
6
5
Correct answer is A
\(^{n}C_{3} = \frac{n!}{(n - 3)! 3!}\)
\(^{n}P_{2} = \frac{n!}{(n - 2)!}\)
\(\frac{^{n}C_{3}}{^{n}P_{2}} = \frac{n!}{(n - 3)! 3!} ÷ \frac{n!}{(n - 2)!}\)
\(\frac{n!}{(n - 3)! 3!} \times \frac{(n - 2)!}{n!} = \frac{(n - 2)!}{(n - 3)! 3!}\)
Note that \((n - 2)! = (n - 2) \times (n - 2 - 1)! = (n - 2)(n - 3)!\)
\(\frac{(n - 2)(n - 3)!}{(n - 3)! 3!} = 1\)
\(\frac{n - 2}{3!} = 1 \implies n - 2 = 6\)
\(n = 2 + 6 = 8\)
If \(x^{2} - kx + 9 = 0\) has equal roots, find the values of k....
If \(2, (k+1), 8,...\) form an exponential sequence (GP), find the values of k...
Simplify \(\frac{^{n}P_{4}}{^{n}C_{4}}\)...
What is the coordinate of the centre of the circle \(5x^{2} + 5y^{2} - 15x + 25y - 3 = 0\)?...