\(\frac{\sqrt{2}}{2}(\sqrt{3} + 1)\)
\(\frac{\sqrt{2}}{4}(\sqrt{3} - 1)\)
\(\frac{\sqrt{2}}{4}(\sqrt{3} + 1)\)
\(\frac{\sqrt{2}}{2}(\sqrt{3} - 1)\)
Correct answer is B
\(\cos(a + b) = \cos a\cos b - \sin a\sin b\)
\(\cos75° = \cos(30 + 45) = (\cos30)(\cos45) - (\sin30)(\sin45)\)
= \((\frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2}) - (\frac{1}{2} \times \frac{\sqrt{2}}{2})\)
= \(\frac{\sqrt{6} - \sqrt{2}}{4}\)
= \(\frac{\sqrt{2}(\sqrt{3} - 1)}{4}\)
Given that a = 5i + 4j and b = 3i + 7j, evaluate (3a - 8b). ...
Solve: \(\sin \theta = \tan \theta\)...
Find the radius of the circle \(x^{2} + y^{2} - 8x - 2y + 1 = 0\)....
Solve (\(\frac{1}{9}\))\(^{x + 2}\) = 243\(^{x - 2}\) ...
The table shows the distribution of the distance (in km) covered by 40 hunters while hunting. ...