\(\frac{\sqrt{2}}{2}(\sqrt{3} + 1)\)
\(\frac{\sqrt{2}}{4}(\sqrt{3} - 1)\)
\(\frac{\sqrt{2}}{4}(\sqrt{3} + 1)\)
\(\frac{\sqrt{2}}{2}(\sqrt{3} - 1)\)
Correct answer is B
\(\cos(a + b) = \cos a\cos b - \sin a\sin b\)
\(\cos75° = \cos(30 + 45) = (\cos30)(\cos45) - (\sin30)(\sin45)\)
= \((\frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2}) - (\frac{1}{2} \times \frac{\sqrt{2}}{2})\)
= \(\frac{\sqrt{6} - \sqrt{2}}{4}\)
= \(\frac{\sqrt{2}(\sqrt{3} - 1)}{4}\)
The length of the line joining points (x,4) and (-x,3) is 7 units. Find the value of x. ...
g(x) = 2x + 3 and f(x) = 3x\(^2\) - 2x + 4 find f {g (-3)}....
Find the maximum value of \(2 + \sin (\theta + 25)\)....
\(Differentiate f (x) = \frac{1}{(1 - x^2)^5}\) with respect to \(x\)....
In how many ways can four Mathematicians be selected from six ? ...