9
7
4
3
Correct answer is C
Given the equation of the circle \(x^{2} + y^{2} - 8x - 2y + 1 = 0\).
The equation of a circle is given as \((x - a)^{2} + (y - b)^{2} = r^{2}\)
Expanding, we have \(x^{2} - 2ax + a^{2} + y^{2} - 2by + b^{2} = r^{2} \equiv x^{2} - 2ax + y^{2} - 2by = r^{2} - a^{2} - b^{2}\)
Comparing the RHS of the equation above with the equation rewritten as \(x^{2} + y^{2} - 8x - 2y = -1\), we have
\(-2a = -8; -2b = -2 \implies a = 4, b = 1\)
\(\therefore r^{2} - 4^{2} - 1^{2} = -1 \implies r^{2} = -1 + 16 + 1 = 16\)
\(r = \sqrt{16} = 4\)
Age in years 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 Frequency 6 8 14 10 12 ...
Three forces, F\(_1\) (8N, 030°), F\(_\2) (10N, 150° ) and F\(_\3) ( KN, 240° ...
If P(x - 3) + Q(x + 1) = 2x + 3, find the value of (P + Q). ...
If \(\frac{6x + k}{2x^2 + 7x - 15}\) = \(\frac{4}{x + 5} - \frac{2}{2x - 3}\). Find the value ...
Evaluate \(\int_{-2}^{3} (3x^{2} - 2x - 12) \mathrm {d} x\)...
Simplify \(2\log_{3} 8 - 3\log_{3} 2\)...
If \(log_{10}(3x+1) + log_{10}4 = log_{10}(9x+2)\), find the value of x ...