\(x = 3, -2\)
\(x = 4, \frac{-2}{3}\)
\(x = -4, \frac{3}{2}\)
\(x = 4, \frac{-3}{2}\)
Correct answer is D
\(\begin{vmatrix} 1+2x & -1 \\ 6 & 3-x \end{vmatrix} = -3 \implies (1+2x)(3-x) - (-6) = -3\)
\(3 - x + 6x - 2x^{2} + 6 = -3\)
\(-2x^{2} + 5x + 3 + 6 + 3 = 0\)
Multiplying through with -1,
\(2x^{2} - 5x -12 = 0\)
\((2x + 3)(x - 4) = 0 \implies x = \frac{-3}{2} , 4\)
Find the coefficient of \(x^{3}\) in the expansion of \([\frac{1}{3}(2 + x)]^{6}\)...
Marks 5-7 8-10 11-13 14-16 17-19 20-22 No of students 4 7 26 41 14 8 T...
Age in years 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 Frequency 6 8 14 10 12 ...
Simplify \(\frac{\sqrt{128}}{\sqrt{32} - 2\sqrt{2}}\)...
Find the radius of the circle 2x\(^2\) - 4x + 2y\(^2\) - 6y -2 = 0. ...
If \(\begin{vmatrix} m-2 & m+1 \\ m+4 & m-2 \end{vmatrix} = -27\), find the value of m...
Given that \(r = 3i + 4j\) and \(t = -5i + 12j\), find the acute angle between them....
Express 75° in radians, leaving your answer in terms of \(\pi\)....