\(x = 3, -2\)
\(x = 4, \frac{-2}{3}\)
\(x = -4, \frac{3}{2}\)
\(x = 4, \frac{-3}{2}\)
Correct answer is D
\(\begin{vmatrix} 1+2x & -1 \\ 6 & 3-x \end{vmatrix} = -3 \implies (1+2x)(3-x) - (-6) = -3\)
\(3 - x + 6x - 2x^{2} + 6 = -3\)
\(-2x^{2} + 5x + 3 + 6 + 3 = 0\)
Multiplying through with -1,
\(2x^{2} - 5x -12 = 0\)
\((2x + 3)(x - 4) = 0 \implies x = \frac{-3}{2} , 4\)
If \(\log_{3} x = \log_{9} 3\), find the value of x....
Find the coordinates of the centre of the circle \(4x^{2} + 4y^{2} - 5x + 3y - 2 = 0\)....
Find the inverse of \(\begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix}\)...
If \(\begin{vmatrix} 3 & x \\ 2 & x - 2 \end{vmatrix} = -2\), find the value of x....