\(\frac{-x}{1 - x}, x \neq 1\)
\(\frac{1}{1 - x}, x \neq 1\)
\(\frac{-1}{1 - x}, x \neq 1\)
\(\frac{x}{1 - x}, x \neq 1\)
Correct answer is A
\(x * y = x + y - xy\)
Let \(x^{-1}\) be the inverse of x, so that
\(x * x^{-1} = x + x^{-1} - x(x^{-1}) = 0\)
\(x + x^{-1} - x(x^{-1}) = 0 \implies x(x^{-1}) - x^{-1} = x\)
\(x^{-1}(x - 1) = x \implies x^{-1} = \frac{x}{x - 1}\)
= \(\frac{x}{-(1 - x)} = \frac{-x}{1 - x}, x \neq 1\)
Express \(\frac{2}{3 - \sqrt{7}} \text{ in the form} a + \sqrt{b}\), where a and b are integers....
Find the coefficient of x\(^2\)in the binomial expansion of \((x + \frac{2}{x^2})^5\)...
Given that P = {x : 1 \(\geq\) x \(\geq\) 6} and Q = {x : 2 < x < 10}. Where x are intege...
Which of the following vectors is perpendicular to \(\begin{pmatrix} -1 & 3 \end{pmatrix}\)?...
If \(f(x) = \frac{1}{2 - x}, x \neq 2\), find \(f^{-1}(-\frac{1}{2})\)....