0.20 mm/s
0.08 mm/s
0.25 mm/s
0.05 mm/s
Correct answer is B
Given: \(\frac{\mathrm d A}{\mathrm d t} = 4 mm^{2}/s\)
\(\frac{\mathrm d A}{\mathrm d t} = (\frac{\mathrm d A}{\mathrm d r})(\frac{\mathrm d r}{\mathrm d t})\)
\(A = \pi r^{2} \implies \frac{\mathrm d A}{\mathrm d r} = 2\pi r\)
\(\implies 4 = 2\pi r \times \frac{\mathrm d r}{\mathrm d t}\)
\(\frac{\mathrm d r}{\mathrm d t} = \frac{4}{2\pi r} = \frac{4 \times 7}{2 \times 22 \times 8}\)
= \(0.07954 mm/s \approxeq 0.08 mm/s\)
A circle with centre (5,-4) passes through the point (5, 0). Find its equation. ...
A function is defined by \(f(x) = \frac{3x + 1}{x^{2} - 1}, x \neq \pm 1\). Find f(-3)....
Given that \(P = \begin{pmatrix} 4 & 9 \end{pmatrix}\) and \(Q = \begin{pmatrix} -1 & -2 \\ ...
Which of the following is not an equation of a circle? ...
Given that M = \(\begin{pmatrix} 3 & 2 \\ -1 & 4 \end{pmatrix}\) and N = ...
The inverse of a function is given by \(f^{-1} : x \to \frac{x + 1}{4}\)....