0.20 mm/s
0.08 mm/s
0.25 mm/s
0.05 mm/s
Correct answer is B
Given: \(\frac{\mathrm d A}{\mathrm d t} = 4 mm^{2}/s\)
\(\frac{\mathrm d A}{\mathrm d t} = (\frac{\mathrm d A}{\mathrm d r})(\frac{\mathrm d r}{\mathrm d t})\)
\(A = \pi r^{2} \implies \frac{\mathrm d A}{\mathrm d r} = 2\pi r\)
\(\implies 4 = 2\pi r \times \frac{\mathrm d r}{\mathrm d t}\)
\(\frac{\mathrm d r}{\mathrm d t} = \frac{4}{2\pi r} = \frac{4 \times 7}{2 \times 22 \times 8}\)
= \(0.07954 mm/s \approxeq 0.08 mm/s\)
Consider the statements: x: The school bus arrived late y: The student walked down to school Whic...
Calculate the standard deviation of 30, 29, 25, 28, 32 and 24. ...
Simplify \((216)^{-\frac{2}{3}} \times (0.16)^{-\frac{3}{2}}\)...
Simplify ( \(\frac{1}{2 - √3}\) + \(\frac{2}{2 + √3}\) )\(^{-1}\)...
Find the derivative of \(\sqrt[3]{(3x^{3} + 1}\) with respect to x....