\(\begin{pmatrix} 16 & 36 \end{pmatrix}\)
\(\begin{pmatrix} 8 & 18 \end{pmatrix}\)
\(\begin{pmatrix} 8 & 0 \end{pmatrix}\)
\(\begin{pmatrix} 1 & 2 \end{pmatrix}\)
Correct answer is A
\(|Q| = \begin{vmatrix} -1 & -2 \\ 3 & 2 \end{vmatrix}\)
= \(-2 - (-6) = 4\)
\(4P = 4\begin{pmatrix} 4 & 9 \end{pmatrix}\)
= \(\begin{pmatrix} 16 & 36 \end{pmatrix}\)
Which of the following is the semi- interquartile range of a distribution? ...
Given that \(y = 4 - 9x\) and \(\Delta x = 0.1\), calculate \(\Delta y\)....
A particle is acted upon by forces F = (10N, 060º), P = (15N, 120º) and Q = (12N, 200º...
Given that \(P = \begin{pmatrix} 4 & 9 \end{pmatrix}\) and \(Q = \begin{pmatrix} -1 & -2 \\ ...
Find the angle between forces of magnitude 7N and 4N if their resultant has a magnitude of 9N. ...
Which of the following vectors is perpendicular to \(\begin{pmatrix} -1 & 3 \end{pmatrix}\)?...
The inverse of a function is given by \(f^{-1} : x \to \frac{x + 1}{4}\)....