\(f : x \to 4x - 1\)
\(f : x \to 4x + 1\)
\(f : x \to \frac{4x - 1}{4}\)
\(f : x \to \frac{x - 1}{2}\)
Correct answer is A
The inverse of the inverse of a function gives the function
i.e \(f^{-1}(f^{-1}(x)) = f(x)\)
\(f^{-1}(x) = \frac{x + 1}{4}\)
Take y = x, so
\(f^{-1}(y) = \frac{y + 1}{4}\)
Let \(x = f^{-1}(y)\),
\(x = \frac{y + 1}{4} \implies 4x = y + 1\)
\(y = f(x) = 4x - 1\)
\(P = {x : 1 \leq x \leq 6}\) and \(Q = {x : 2 < x < 9}\) where \(x \in R\), find \(P \cap Q\)...
If \(f(x) = 3x^{3} + 8x^{2} + 6x + k\) and \(f(2) = 1\), find the value of k....
Solve \(3x^{2} + 4x + 1 > 0\)...
Differentiate \(\frac{x}{x + 1}\) with respect to x. ...
If f(x-1) = x\(^3\) + 3x\(^2\) + 4x - 5, find f(2)...
Differentiate \(\frac{5x^{3} + x^{2}}{x}, x\neq 0\) with respect to x....