\(27\sqrt{2}\)
\(27\sqrt{6}\)
\(81\sqrt{2}\)
\(81\sqrt{6}\)
Correct answer is C
\(T_{n} = ar^{n - 1}\) (Geometric progression)
\(a = \sqrt{6}, r = \frac{T_{2}}{T_{1}} = \frac{3\sqrt{2}}{\sqrt{6}} \)
\(r = \frac{\sqrt{18}}{\sqrt{6}} = \sqrt{3}\)
\(\therefore T_{8} = (\sqrt{6})(\sqrt{3})^{8 - 1} \)
= \((\sqrt{6})(27\sqrt{3}) = 27\sqrt{18} = 81\sqrt{2}\)
Evaluate\({1_0^∫} x^2(x^3+2)^3\)...
Given that \(\log_{2} y^{\frac{1}{2}} = \log_{5} 125\), find the value of y...
A car is moving at 120\(kmh^{-1}\). Find its speed in \(ms^{-1}\)....
Given that \(a = i - 3j\) and \(b = -2i + 5j\) and \(c = 3i - j\), calculate \(|a - b + c|\)....
If \((2x^{2} - x - 3)\) is a factor of \(f(x) = 2x^{3} - 5x^{2} - x + 6\), find the other factor...