\(27\sqrt{2}\)
\(27\sqrt{6}\)
\(81\sqrt{2}\)
\(81\sqrt{6}\)
Correct answer is C
\(T_{n} = ar^{n - 1}\) (Geometric progression)
\(a = \sqrt{6}, r = \frac{T_{2}}{T_{1}} = \frac{3\sqrt{2}}{\sqrt{6}} \)
\(r = \frac{\sqrt{18}}{\sqrt{6}} = \sqrt{3}\)
\(\therefore T_{8} = (\sqrt{6})(\sqrt{3})^{8 - 1} \)
= \((\sqrt{6})(27\sqrt{3}) = 27\sqrt{18} = 81\sqrt{2}\)
If (x - 3) is a factor of \(2x^{2} - 2x + p\), find the value of constant p....
A fair coin is tossed 3 times. Find the probability of obtaining exactly 2 heads. ...
If √5 cosx + √15sinx = 0, for 0° < x < 360°, find the values of x. ...
Simplify: \(\frac{\cos 2\theta - 1}{\sin 2\theta}\)...
Two forces, each of magnitude 16 N, are inclined to each other at an angle of 60°. Calculate the...
If the determinant of the matrix \(\begin{pmatrix} 2 & x \\ 3 & 5 \end{pmatrix} = 13\), find...
Consider the statements: x: Birds fly y: The sky is blue Which of the following statements ...