\(x < -1, x < -\frac{1}{3}\)
\(x > -1, x > -\frac{1}{3}\)
\(x > \frac{1}{3}, x < -1\)
\(x < \frac{1}{3}, x > -1\)
Correct answer is B
\(3x^{2} + 4x + 1 > 0 \)
\(3x^{2} + 3x + x + 1 > 0\)
\(3x(x + 1) + 1(x + 1) > 0\)
\((3x + 1)(x + 1) > 0\)
\(3x + 1 > 0 \implies 3x > -1 \)
\(x > -\frac{1}{3}\)
\(x + 1 > 0 \implies x > -1\)
\(x > -1, x > -\frac{1}{3}\)
Find the upper quartile of the following scores: 41, 29, 17, 2, 12, 33, 45, 18, 43 and 5. ...
Evaluate \(4p_2 + 4C_2 - 4p_3\)...
Given that F\(^1\)(x) = x\(^3\)√x, find f(x)...
If \(y^{2} + xy - x = 0\), find \(\frac{\mathrm d y}{\mathrm d x}\)....
If \(f(x) = \frac{1}{2 - x}, x \neq 2\), find \(f^{-1}(-\frac{1}{2})\)....
Express \(\frac{x^{2} + x + 4}{(1 - x)(x^{2} + 1)}\) in partial fractions....
Simplify \(\frac{\sqrt{128}}{\sqrt{32} - 2\sqrt{2}}\)...
Find the acute angle between the lines 2x + y = 4 and -3x + y + 7 = 0. ...
If the solution set of \(x^{2} + kx - 5 = 0\) is (-1, 5), find the value of k....