Find the unit vector in the direction of (-5i + 12j).
...Find the unit vector in the direction of (-5i + 12j).
\(\frac{1}{13}(-5i - 12j)\)
\(\frac{1}{13}(5i - 12j)\)
\(\frac{1}{13}(-5i + 12j)\)
\(\frac{1}{13}(5i + 12j)\)
Correct answer is C
The unit vector \(\hat{n} = \frac{\overrightarrow{r}}{|r|}\)
\(\hat{n} = \frac{-5i + 12j}{\sqrt{(-5)^{2} + (12)^{2}} \)
= \(\frac{-5i + 12j}{13} \)
From the diagram above, which of the following represents the vector V in component form? ...
If \(y = 2(2x + \sqrt{x})^{2}\), find \(\frac{\mathrm d y}{\mathrm d x}\)....
Simplify \(\frac{x^{3n + 1}}{x^{2n + \frac{5}{2}}(x^{2n - 3})^{\frac{1}{2}}}\)...
If \(y = x^{3} - x^{2} - x + 6\), find the values of x at the turning point....
Given that \(\log_{2} y^{\frac{1}{2}} = \log_{5} 125\), find the value of y...