\(\frac{6}{5}\)
\(\frac{25}{24}\)
\(\frac{24}{25}\)
\(\frac{5}{6}\)
Correct answer is A
\(\sqrt{4x^2 + 1}\) = \(\frac{13x}{6}\)
4x\(^2\) + 1 = \(\frac{169x^2}{36}\)
4 + x\(^2\) = \(\frac{169x^2}{36}\)
cross multiply
169x\(^2\) - 144x\(^2\) = 36
25x\(^2\) = 36
x\(^2\) = \(\frac{36}{25}\)
: x = \(\pm\frac{6}{5}\)
Given that P and Q are non-empty subsets of the universal set, U. Find P \(\cap\) (Q U Q`)....
If \(^nC_2\) = 15, find the value of n...
If \((2x^{2} - x - 3)\) is a factor of \(f(x) = 2x^{3} - 5x^{2} - x + 6\), find the other factor...
If \(\frac{5}{\sqrt{2}} - \frac{\sqrt{8}}{8} = m\sqrt{2}\), where m is a constant. Find m....
Find the value of \(\cos(60° + 45°)\) leaving your answer in surd form...