\(\begin{pmatrix} - \frac{5}{3} &, 0 \end {pmatrix}\)
\(\begin{pmatrix} 0, & - \frac{5}{3} \end {pmatrix}\)
\(\begin{pmatrix} 0, & \frac{5}{3} \end {pmatrix}\)
\(\begin{pmatrix} \frac{5}{3} &, 0 \end {pmatrix}\)
Correct answer is D
y = 8x + 5
m = 8
y = 3x\(^2\) - 2x - 5
\(\frac{dy}{dx}\) = 6x - 2x - 5
\(\frac{6x}{6} = \frac{10}{6}\)
x = \(\frac{5}{3}\)
y = 0
Find the value of \(\cos(60° + 45°)\) leaving your answer in surd form...
Simplify \((1 + 2\sqrt{3})^{2} - (1 - 2\sqrt{3})^{2}\)...
Find the gradient to the normal of the curve \(y = x^{3} - x^{2}\) at the point where x = 2....
Three forces \(F_{1} = (8 N, 300°), F_{2} = (6 N, 090°)\) and \(F_{3} = (4 N, 180°)\) ac...