9
8
7
6
Correct answer is A
\(\int^3_0(px^2 + 16)\) = 129
\(\frac{px^2 + 1}{0 + 1} + 16x|^3_0 = 129\)
\(\frac{px^3}{3} + 16x|^3_0 = 129\)
(\(\frac{p(3)^3}{3} + 16(3)\)) - 0 = 129
9p + 48 = 129
9p = 129 - 48
\(\frac{9p}{9} = \frac{81}{9}\)
p = 9
Adu's scores in five subjects in an examination are 85, 84, 83, 86...
Given that \(\log_{2} y^{\frac{1}{2}} = \log_{5} 125\), find the value of y...
Express \(\log \frac{1}{8} + \log \frac{1}{2}\) in terms of \(\log 2\)...
If \(P = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}\), find \((P^{2} + P)\)....
Evaluate \(\int_{\frac{1}{2}}^{1} \frac{x^{3} - 4}{x^{3}} \mathrm {d} x\)....