\(\frac{63}{65}\)
\(\frac{48}{65}\)
\(\frac{56}{65}\)
\(\frac{16}{65}\)
Correct answer is A
\(sin x = \frac{4}{5}\) and \(cos y = \frac{12}{13}\)
x is obtuse i.e sin x = + ve while cos x = + ve
\(cos x=\frac{3}{5}==>cos x=-\frac {3}{5}(obtuse)\)
\(sin y= \frac{5}{13}\)
\(sin (x-y) = sin x\) \(cos y - cos x\) \(sin y\)
\(sin(x-y) = \frac{4}{5}\times\frac{12}{13}-(-\frac{3}{5})\times\frac{5}{13}\)
\(sin(x-y) = \frac{48}{65}-(-\frac{3}{13})\)
\(\therefore sin (x-y) = \frac{48}{65} + \frac{3}{13} = \frac{63}{65}\)
Simplify \(\frac{1 + \sqrt{8}}{3 - \sqrt{2}}\)...
A particle is acted upon by forces F = (10N, 060º), P = (15N, 120º) and Q = (12N, 200º...
The remainder when \(x^{3} - 2x + m\) is divided by \(x - 1\) is equal to the remainder when \...
If (2t - 3s)(t - s) = 0, find \(\frac{t}{s}\)...
If the solution set of \(x^{2} + kx - 5 = 0\) is (-1, 5), find the value of k....
The mean of 2, 5, (x + 2), 7 and 9 is 6. Find the median. ...
Find the upper quartile of the following scores: 41, 29, 17, 2, 12, 33, 45, 18, 43 and 5. ...