(\(\frac{-1}{4}\), \(\frac{3}{4}\))
(\(\frac{1}{4}\), \(\frac{3}{4}\)
(\(\frac{-1}{2}\), \(\frac{3}{2}\))
(\(\frac{-1}{2}\), \(\frac{-3}{2}\))
Correct answer is B
2x\(^2\) + 2y\(^2\) - x - 3y - 41
standard equation of circle
(x-a)\(^2\) + (x-b)\(^2\) = r\(^2\)
General form of equation of a circle.
x\(^2\) + y\(^2\) + 2gx + 2fy + c = 0
a = -g, b = -f., r2 = g2 + f2 - c
the centre of the circle is (a,b)
comparing the equation with the general form of equation of circle.
2x\(^2\) + 2y\(^2\) - x - 3y - 41
= x\(^2\) + y\(^2\) + 2gx + 2fy + c
2x\(^2\) + 2y\(^2\) - x - 3y - 41 = 0
divide through by 2
g = \(\frac{-1}{4}\) ; 2g = \(\frac{-1}{2}\)
f = \(\frac{-3}{4}\) ; 2f = \(\frac{-3}{2}\)
a = -g → - \(\frac{-1}{4}\) ; = \(\frac{1}{4}\)
b = -f → - (\frac{-3}{4}\) = (\frac{3}{4}\)
therefore the centre is (\(\frac{1}{4}\), \(\frac{3}{4}\))
Evaluate \(\int_{-1}^{1} (x + 1)^{2}\mathrm {d} x\). ...
Differentiate \(\frac{x}{x + 1}\) with respect to x...
(\(\frac{3√6}{√5} + \frac{√54}{3√5}\))\(^{-1}\)...
Given that P = { x: 0 ≤ x ≤ 36, x is a factor of 36 divisible by 3} and Q = { x...
If \(3x^2 + p x + 12 = 0\) has equal roots, find the values of p ....
If \(\frac{5}{\sqrt{2}} - \frac{\sqrt{8}}{8} = m\sqrt{2}\), where m is a constant. Find m....
Solve the inequality \(x^{2} - 2x \geq 3\)...
Given that \(P = \begin{pmatrix} y - 2 & y - 1 \\ y - 4 & y + 2 \end{pmatrix}\) and |P| = -2...