\(12\)
\(2\frac{1}{2}\)
\(2\)
\(\frac{11}{24}\)
Correct answer is D
n = 3, \(\frac{1}{(n-1)!} - \frac{1}{(n+1)!} = \frac{1}{(3-1)!} - \frac{1}{(3+1)!}\)
= \(\frac{1}{2} - \frac{1}{24} = \frac{12 -1}{24}\)
= \(\frac{11}{24}\)
Find the coefficient of \(x^{3}\) in the expansion of \([\frac{1}{3}(2 + x)]^{6}\)...
Find the fourth term of the binomial expansion of \((x - k)^{5}\) in descending powers of x....
Given that \(f(x) = 3x^{2} - 12x + 12\) and \(f(x) = 3\), find the values of x....
Given that \(P = \begin{pmatrix} y - 2 & y - 1 \\ y - 4 & y + 2 \end{pmatrix}\) and |P| = -2...
For what values of x is \(\frac{x^{2} - 9x + 18}{x^{2} + 2x - 35}\) undefined?...