-2
0
1
2
Correct answer is B
To find the maximum value, we can use the second derivative test where, given f(x), the second derivative < 0, makes it a maximum value.
x(x+1)2=x(x2+2x+1)=x3+2x2+x
dydx=3x2+4x+1=0
Solving, we have x=−13 or −1.
d2ydx2=6x+4
When x=−13,d2ydx2=2>0
When x=−1,d2ydx2=−2<0
At maximum value of x being -1, y=−1(−1+1)2=0
If y=4x−1, list the range of the domain −2≤x≤2, where x is an integer....
If √x+√x+1=√2x+1, find the possible values of x....
The sum, Sn, of a sequence is given by Sn=2n2−5. Find the 6th term...
If 2\sin^{2}\theta = 1 + \cos \theta, 0° \leq \theta \leq 90°, find \theta...
Express \frac{8 - 3\sqrt{6}}{2\sqrt{3} + 3\sqrt{2}} in the form p\sqrt{3} + q\sqrt{2}...
Evaluate 4p_2 + 4C_2 - 4p_3...
Find the constant term in the binomial expansion of (2x - \frac{3}{x})^{8}....
Given the statements: p : the subject is difficult q : I will do my best Which of the follo...