-80
10
40
90
Correct answer is C
x\(^3\)y\(^2\) in (x-2y)\(^5\)
n = 5, r = 3, p = x, q = -2y
5C\(_3\) * x\(^3\) -2y\(^2\)
5C\(_3\) = \(\frac{5!}{[5-3]!3!}\)
\(\frac{5*4*3!}{2! 3!}\) → \(\frac{5*4}{2}\)
5C\(_3\) = 10
: 5C\(_3\) * x\(^3\) -2y\(^2\) = 10 * x\(^3\) 4y\(^2\)
40x\(^3\)y\(^2\)
the coefficient is 40
If \(y = x^{3} - x^{2} - x + 6\), find the values of x at the turning point....
The equation of a circle is \(x^{2} + y^{2} - 8x + 9y + 15 = 0\). Find its radius....
Evaluate \(\int_{1}^{2} \frac{4}{x^{3}} \mathrm {d} x\)...
Find the radius of the circle \(x^{2} + y^{2} - 8x - 2y + 1 = 0\)....
Find the direction cosines of the vector \(4i - 3j\)....
A force 10N acts in the direction 060° and another force 6N acts in the direction 330°. Find...
Given that P = {x : 1 \(\geq\) x \(\geq\) 6} and Q = {x : 2 < x < 10}. Where x are intege...
Find the radius of the circle 2x\(^2\) - 4x + 2y\(^2\) - 6y -2 = 0. ...