2
-2
1
-1
Correct answer is A
\(\frac{3x + 4}{(x - 2)(x + 3)}≡\frac{P}{x + 3}+\frac{Q}{x - 2}\)
\(\frac{3x + 4}{(x - 2)(x + 3)}=\frac{P(x-2)+Q(x+3)}{(x-2)(x+3)}\)
=\(3x+4=P(x-2)+Q(x+3)\)
=\(3x+4=Px-2P+Qx+3Q\)
=\(3x+4=Px+Qx-2P+3Q\)
=\(3x+4=(P+Q)x-2P+3Q\)
Equating x and the constants
P+Q=3------(i)
2P+3Q=4-------(ii)
From equation (i)
P=3-Q------(iii)
Substitute (3-Q) for P inequation (ii)
=-2(3-Q)+3Q=4
=-6+2Q+3Q=4
=-6+5Q=4
=5Q=4+6
=5Q=10
∴Q=\(\frac{10}{5}=2\)
Given that \(f(x) = \frac{x+1}{2}\), find \(f^{1}(-2)\)....
Which of the following sets is equivalent to \((P \cup Q) \cap (P \cup Q')\)?...
Evaluate \(\int^1_0 x(x^2-2)^2 dx\)...
Evaluate \(\cos (\frac{\pi}{2} + \frac{\pi}{3})\)...
If \(g(x) = \frac{x + 1}{x - 2}, x \neq -2\), find \(g^{-1}(2)\)....
If \(2, (k+1), 8,...\) form an exponential sequence (GP), find the values of k...
Solve \(3x^{2} + 4x + 1 > 0\)...
Given that \(x^{2} + 4x + k = (x + r)^{2} + 1\), find the value of k and r...
The sum, \(S_{n}\), of a sequence is given by \(S_{n} = 2n^{2} - 5\). Find the 6th term...