\(\sqrt{\frac{42W}{5L}}\)
\(\sqrt{\frac{6L}{42W}}\)
\(\frac{42W}{5L}\)
\(\frac{5L}{42W}\)
Correct answer is A
\(W\infty LD^2\\W=KLd^2\\K=\frac{W}{Ld^2}\\=\frac{140}{54}\times\left(4\frac{2}{3}\right)^2 \\=\frac{140}{54}\times\left(\frac{14}{3}\right)^2\\=\frac{140\times 9}{54\times 14\times 14}\\=\frac{5}{42}\\∴W=\frac{5}{42Ld^2}\\42W=5Ld^2\\\frac{42W}{5L}=d^2\\d=\sqrt{\frac{42W}{5L}}\)
Simplify 0.000215 x 0.000028 and express your answer in standard form ...
If p = [\(\frac{Q(R - T)}{15}\)]\(^ \frac{1}{3}\), make T the subject of the relation...
Simplify 0.63954 ÷ 0.003 giving your answer correct to two significant figures ...
Given that (3 - y) ÷ 2x = (6y + 7) ÷ (4x - 5), find the value of x when y = 2 ...
Evaluate \(\int_1 ^2(6x^2-2x)dx\) ...
In the diagram, PQRW is a circle. Line P, V and QR are produced to meet at M, where ∠WMR = 30o a...
In a triangle XYZ, < YXZ = 44° and < XYZ = 112°. Calculate the acute angle b...
If the total surface area of a solid hemisphere is equal to its volume, find the radius ...