Integrate \(\frac{x^2 -\sqrt{x}}{x}\) with respect to x
Integrate \(\frac{x^2 -\sqrt{x}}{x}\) with respect to x
\(\frac{x^2}{2}-2\sqrt{x}+K\)
\(\frac{2(x^2 - x)}{3x}+K\)
\(\frac{x^2}{2}-\sqrt{x}+K\)
\(\frac{(x^2 - x)}{3x}+K\)
Correct answer is A
\(\int \frac{x^2 -\sqrt{x}}{x} = \int \frac{x^2}{x} - \frac{x^{\frac{1}{2}}}{x}\\
\int x - x^{\frac{-1}{2}}\\
=\left(\frac{1}{2}\right)x^2 - \frac{x^{\frac{1}{2}}}{\frac{1}{2}}+K\\
=\frac{x^2}{2}-2x^{\frac{1}{2}}+K\\
=\frac{x^2}{2}-2\sqrt{x}+K\)
The nth term of the sequence -2, 4, -8, 16.... is given by ...
If 2x + y = 10, and y \(\neq\) 0, which of the following is not a possible value of x?...
Solved the equation \(2x^2 - x - 6\) = 0...
In the diagram, < WOX = 60o, < YOE = 50o and < OXY = 30o. What is the bearing of x from y?...
Determine the distance on the earth's surface between two town P (lat 60°N, Long 20°E) a...