Find y, if \(\sqrt{12}-\sqrt{147}+y\sqrt{3} = 0\)
...Find y, if \(\sqrt{12}-\sqrt{147}+y\sqrt{3} = 0\)
5
1
7
3
Correct answer is A
\(\sqrt{12}-\sqrt{147}+y\sqrt{3} = 0\\
\sqrt{4\times 3}-\sqrt{49\times 3}+y\sqrt{3} = 0\\
2\sqrt{3}-7\sqrt{3}+y\sqrt{3} = 0\\
y\sqrt{3} = 7\sqrt{3} - 2\sqrt{3}\\
y=\frac{5\sqrt{3}}{\sqrt{3}}\\
y = 5\)
If 2 log x (3\(\frac{3}{8}\)) = 6, find the value of x...
Simplify \((\sqrt{0.7} + \sqrt{70})^{2}\) ...
Multiply (x + 3y + 5) by (2x2 + 5y + 2)...
Solve the inequality: \(\frac{2x - 5}{2} < (2 - x)\)...
Convert 241 in base 5 to base 8, ...
The set of value of x and y which satisfies the equations x2 - y - 1 = 0 and y - 2x + 2 = 0 is...