12o
56o
68o
78o
Correct answer is C
No explanation has been provided for this answer.
\(\begin{pmatrix} 10 & 7 \\ 12 & 9 \end{pmatrix}\)
\(\begin{pmatrix} 2 & 7 \\ 4 & 17 \end{pmatrix}\)
\(\begin{pmatrix} 10 & 4 \\ 4 & 6 \end{pmatrix}\)
\(\begin{pmatrix} 4 & 3 \\ 10 & 9 \end{pmatrix}\)
Correct answer is A
\(\begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}\); y = \(\begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix}\).
= \(\begin{pmatrix} 2 + 8 & 1 + 6 \\ 0 + 12 & 0 + 9 \end{pmatrix}\)
= \(\begin{pmatrix} 10 & 7 \\ 12 & 9 \end{pmatrix}\)
\(\begin{vmatrix} -2 & 1 & 1 \\ 2 & 1 & k \\1 & 3 & -1 \end{vmatrix}\) = 23
1
2
3
4
Correct answer is B
-2(-1 - 3k) - 1(-2 -k) + 1(6 - 1) = 23
7k = 14
k = 2
\(\frac{1}{10}\)
\(\frac{9}{10}\)
\(\frac{10}{9}\)
10
Correct answer is D
\(S_{\infty} = \frac{a}{1 - r}\) (Sum to infinity of a G.P)
\(a = 1; r = \frac{9}{10}\)
\(S_{\infty} = \frac{1}{1 - \frac{9}{10}}\)
= \(\frac{1}{\frac{1}{10}} = 10\)
If a \(\ast\) b = + \(\sqrt{ab}\), evaluate 2 \(\ast\)(12 \(\ast\) 27)
12
9
6
2
Correct answer is C
\(2 \ast (12 \ast 27)\)
\(12 \ast 27 = + \sqrt{12 \times 27}\)
= \(+ \sqrt{324} = 18\)
\(2 \ast 18 = + \sqrt{2 \times 18}\)
= \(+ \sqrt{36} = 6\)