r(35 + q)
q(35r - q)
q(35 + r)
r(35 + 2q)
Correct answer is D
The cost of normal work = 35r
The cost of overtime = q x 2r = 2qr
The man's total weekly earning = 35r + 2qr
= r(35 + 2q)
N62.50
N35.00
N31.00
N25.00
Correct answer is D
V\(\pi\)r2h = \(\pi\)(3)2(10) = 90\(\pi\)cm3
V = \(\pi\)(5)2 x 18 = 450\(\pi\)cm3
No of volume = \(\frac{450\pi}{90\pi}\)
= 5
selling price = 5 x N15 = N75
profit = N75 - N50 = N25.00
Find the value of k if \(\frac{k}{\sqrt{3} + \sqrt{2}}\) = k\(\sqrt{3 - 2}\)
3
2
\(\sqrt{3}\)
\(\sqrt 2\)
Correct answer is D
\(\frac{k}{\sqrt{3} + \sqrt{2}}\) = k\(\sqrt{3 - 2}\)
\(\frac{k}{\sqrt{3} + \sqrt{2}}\) x \(\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}}\)
= k\(\sqrt{3 - 2}\)
= k(\(\sqrt{3} - \sqrt{2}\))
= k\(\sqrt{3 - 2}\)
= k\(\sqrt{3}\) - k\(\sqrt{2}\)
= k\(\sqrt{3 - 2}\)
k2 = \(\sqrt{2}\)
k = \(\frac{2}{\sqrt{2}}\)
= \(\sqrt{2}\)
2, 3
3, 2
-2, -3
-3, -2
Correct answer is C
log4(y - 1) + log4(\(\frac{1}{2}\)x) = 1
log4(y - 1)(\(\frac{1}{2}\)x) \(\to\) (y - 1)(\(\frac{1}{2}\)x) = 4 ........(1)
log2(y + 1) + log2x = 2
log2(y + 1)x = 2 \(\to\) (y + 1)x = 22 = 4.....(ii)
From equation (ii) x = \(\frac{4}{y + 1}\)........(iii)
put equation (iii) in (i) = y (y - 1)[\(\frac{1}{2}(\frac{4}{y - 1}\))] = 4
= 2y - 2
= 4y + 4
2y = -6
y = -3
x = \(\frac{4}{-3 + 1}\)
= \(\frac{4}{-2}\)
X = 2
therefore x = -2, y = -3
If b3 = a-2 and c\(\frac{1}{3}\) = a\(\frac{1}{2}\)b, express c in terms of a
a-\(\frac{1}{2}\)
a\(\frac{1}{3}\)
a\(\frac{3}{2}\)
a\(\frac{2}{3}\)
Correct answer is A
c\(\frac{1}{3}\) = a\(\frac{1}{2}\)b
= a\(\frac{1}{2}\)b x a-2
= a-\(\frac{3}{2}\)
= (c\(\frac{1}{3}\))3
= (a-\(\frac{3}{2}\))\(\frac{1}{3}\)
c = a-\(\frac{1}{2}\)