60
62
54
64
Correct answer is B
T2 = 4, T4 = 16
Tx = arn-1
T2 = ar2-1 = 4 i.e. ar3 = 16, i.e. ar = 4
T4 = ar4-1
therefore, \(\frac{T_4}{T_r}\) = \(\frac{ar^3}{ar}\) = \(\frac{16}{4}\)
r2 = 4 and r = 2
but ar = 4
a = \(\frac{4}{r}\) = \(\frac{4}{2}\)
a = 2
Sn = \(\frac{a(r^n - 1)}{r - 1}\)
S5 = \(\frac{2(2^5 - 1)}{2 - 1}\)
= \(\frac{2(32 - 1)}{2 - 1}\)
= 2(31)
= 62
Find the sum of the first 18 terms of the series 3, 6, 9,..., 36.
505
513
433
635
Correct answer is B
3, 6, 9,..., 36.
a = 3, d = 3, i = 36, n = 18
Sn = \(\frac{n}{2}\) [2a + (n - 1)d
S18 = \(\frac{18}{2}\) [2 x 3 + (18 - 1)3]
= 9[6 + (17 x 3)]
= 9 [6 + 51] = 9(57)
= 513
Solve the inequality x2 + 2x > 15.
x < -3 or x > 5
-5 < x < 3
x < 3 or x > 5
x > 3 or x < -5
Correct answer is B
x2 + 2x > 15
x2 + 2x - 15 > 0
(x2 + 5x) - (3x - 15) > 0
x(x + 5) - 3(x + 5) >0
(x - 3)(x + 5) > 0
therefore, x = 3 or -5
i.e. x< 3 or x > -5
Solve the inequality -6(x + 3) \(\leq\) 4(x - 2)
x \(\leq\) 2
x \(\geq\) -1
x \(\geq\) -2
x \(\leq\) -1
Correct answer is B
-6(x + 3) \(\leq\) 4(x - 2)
-6(x +3) \(\leq\) 4(x - 2)
-6x -18 \(\leq\) 4x - 8
-18 + 8 \(\leq\) 4x +6x
-10 \(\leq\) 10x
10x \(\geq\) -10
x \(\geq\) -1
T varies inversely as the cube of R. When R = 3, T = \(\frac{2}{81}\), find T when R = 2
\(\frac{1}{18}\)
\(\frac{1}{12}\)
\(\frac{1}{24}\)
\(\frac{1}{6}\)
Correct answer is B
T \(\alpha \frac{1}{R^3}\)
T = \(\frac{k}{R^3}\)
k = TR3
= \(\frac{2}{81}\) x 33
= \(\frac{2}{81}\) x 27
dividing 81 by 27
k = \(\frac{2}{2}\)
therefore, T = \(\frac{2}{3}\) x \(\frac{1}{R^3}\)
When R = 2
T = \(\frac{2}{3}\) x \(\frac{1}{2^3}\) = \(\frac{2}{3}\) x \(\frac{1}{8}\)
= \(\frac{1}{12}\)