JAMB Mathematics Past Questions & Answers - Page 315

1,571.

The seconds term of a geometric series is 4 while the fourth term is 16. Find the sum of the first five terms

A.

60

B.

62

C.

54

D.

64

Correct answer is B

T2 = 4, T4 = 16

Tx = arn-1

T2 = ar2-1 = 4 i.e. ar3 = 16, i.e. ar = 4

T4 = ar4-1

therefore, \(\frac{T_4}{T_r}\) = \(\frac{ar^3}{ar}\) = \(\frac{16}{4}\)

r2 = 4 and r = 2

but ar = 4

a = \(\frac{4}{r}\) = \(\frac{4}{2}\)

a = 2

Sn = \(\frac{a(r^n - 1)}{r - 1}\)

S5 = \(\frac{2(2^5 - 1)}{2 - 1}\)

= \(\frac{2(32 - 1)}{2 - 1}\)

= 2(31)

= 62

1,572.

Find the sum of the first 18 terms of the series 3, 6, 9,..., 36.

A.

505

B.

513

C.

433

D.

635

Correct answer is B

3, 6, 9,..., 36.

a = 3, d = 3, i = 36, n = 18

Sn = \(\frac{n}{2}\) [2a + (n - 1)d

S18 = \(\frac{18}{2}\) [2 x 3 + (18 - 1)3]

= 9[6 + (17 x 3)]

= 9 [6 + 51] = 9(57)

= 513

1,573.

Solve the inequality x2 + 2x > 15.

A.

x < -3 or x > 5

B.

-5 < x < 3

C.

x < 3 or x > 5

D.

x > 3 or x < -5

Correct answer is B

x2 + 2x > 15

x2 + 2x - 15 > 0

(x2 + 5x) - (3x - 15) > 0

x(x + 5) - 3(x + 5) >0

(x - 3)(x + 5) > 0

therefore, x = 3 or -5

i.e. x< 3 or x > -5

1,574.

Solve the inequality -6(x + 3) \(\leq\) 4(x - 2)

A.

x \(\leq\) 2

B.

x \(\geq\) -1

C.

x \(\geq\) -2

D.

x \(\leq\) -1

Correct answer is B

-6(x + 3) \(\leq\) 4(x - 2)

-6(x +3) \(\leq\) 4(x - 2)

-6x -18 \(\leq\) 4x - 8

-18 + 8 \(\leq\) 4x +6x

-10 \(\leq\) 10x

10x \(\geq\) -10

x \(\geq\) -1

1,575.

T varies inversely as the cube of R. When R = 3, T = \(\frac{2}{81}\), find T when R = 2

A.

\(\frac{1}{18}\)

B.

\(\frac{1}{12}\)

C.

\(\frac{1}{24}\)

D.

\(\frac{1}{6}\)

Correct answer is B

T \(\alpha \frac{1}{R^3}\)

T = \(\frac{k}{R^3}\)

k = TR3

= \(\frac{2}{81}\) x 33

= \(\frac{2}{81}\) x 27

dividing 81 by 27

k = \(\frac{2}{2}\)

therefore, T = \(\frac{2}{3}\) x \(\frac{1}{R^3}\)

When R = 2

T = \(\frac{2}{3}\) x \(\frac{1}{2^3}\) = \(\frac{2}{3}\) x \(\frac{1}{8}\)

= \(\frac{1}{12}\)