JAMB Mathematics Past Questions & Answers - Page 328

1,636.

The mean of seven numbers is 10. If six of the numbers are 2, 4, 8, 14, 16 and 18, find the mode.

A.

6

B.

8

C.

14

D.

2

Correct answer is B

Using x = \(\frac{\sum x}{N}\) in each case, we get;

\(\sum_{6}^{i=1} x_i\) = 10 x 7 = 70

\(\sum_{7}^{i=1} x_i\) = 2 + 4 + 8 + 14 + 16 + 18 = 62

Hence the missing number can be obtained from

\(\sum_{6}^{i=1} x_i - \sum_{7}^{i=1} x_i\) = 70 - 62 = 8

So, all the seven numbers are 2, 4, 8, 8, 14, 16, 18

Mode = 8

1,637.

Find the mean of t + 2, 2t - 4, 3t + 2 and 2t.

A.

t + 1

B.

2t

C.

2t + 1

D.

t

Correct answer is B

\(\sum x\) = (t + 2) + (2t + 4) + (3t + 2) + 2t = 8t

N = 4_

∴ Mean, x = \(\frac{\sum x}{N} = \frac{8t}{4} = 2t\)

= 2t

1,638.

The radius of a circle is increasing at the rate of 0.02cms-1. Find the rate at which the area is increasing when the radius of the circle is 7cm.

A.

0.75cm2S-1

B.

0.53cm2S-1

C.

0.35cm2S-1

D.

0.88cm2S-1

Correct answer is D

A = \(\pi\)r2, \(\frac{\delta A}{\delta r}\) = 2πr

So, using \(\frac{\delta A}{\delta t}\) = \(\frac {\delta A}{\delta r}\) x \(\frac {\delta A}{\delta t}\)

= 2\(\pi\)r x 0.02

= 2\(\pi\) x 7 x 0.02

= 2 x \(\frac{22}{7}\) x 0.02

= 0.88cm2s-1

1,639.

If y = (2x + 2)\(^3\), find \(\frac{\delta y}{\delta x}\)

A.

3(2x +2)2

B.

6(2x +2)

C.

3(2x +2)

D.

6(2x +2)2

Correct answer is D

\(y = (2x + 2)^{3}\)

\(\frac{\mathrm d y}{\mathrm d x} = 3(2x + 2)^{3 - 1} . 2\)

= \(6(2x + 2)^{2}\)

1,640.

If y = x sin x, find \(\frac{\delta y}{\delta x}\)

A.

sin x - cos x

B.

cos x - x sin x

C.

cos x + x sin x

D.

sin x + x cos x

Correct answer is D

y = x sin x

Where u = x and v = sin x

Then \(\frac{\delta u}{\delta x}\) = 1 and \(\frac{\delta v}{\delta x}\) = cos x

By the chain rule, \(\frac{\delta y}{\delta x} = v\frac{\delta u}{\delta x} + u\frac{\delta v}{\delta x}\)

= (sin x)1 + x cos x

= sin x + x cos x