JAMB Mathematics Past Questions & Answers - Page 331

1,651.

If S = \(\sqrt{t^2 - 4t + 4}\), find t in terms of S

A.

S2 - 2

B.

S + 2

C.

S - 2

D.

S2 + 2

Correct answer is B

S = \(\sqrt{t^2 - 4t + 4}\)

S2 = t2 - 4t + 4

t2 - 4t + 4 - S2 = 0

Using \(t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)

Substituting, we have;

Using \(t = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(4 - S^2)}}{2(1)}\)

\(t = \frac{4 \pm \sqrt{16 - 4(4 - S^2)}}{2}\)

\(t = \frac{4 \pm \sqrt{16 - 16 + 4S^2}}{2}\)

\(t = \frac{4 \pm \sqrt{4S^2}}{2}\)

\(t = \frac{2(2 \pm S)}{2}\)

Hence t = 2 + S or t = 2 - S

1,652.

if P = {x:x is odd, \(-1 < x \leq 20\)} and Q is {y:y is prime, \(-2 < y \leq 25\), find P \(\cap\) Q

A.

{3,5,7,11,17,19}

B.

{3,5,11,13,17,19}

C.

{3,5,7,11,13,17,19}

D.

{2,3,5,7,11,13,17,19}

Correct answer is C

P = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}

Q = {-1, 3, 5, 7, 11, 13, 17, 19, 23}

P \(\cap\) Q = {3, 5, 7, 11, 13, 17, 19}

1,653.

Simplify \(\frac{\sqrt{5}(\sqrt{147} - \sqrt{12}}{\sqrt{15}}\)

A.

5

B.

\(\frac{1}{5}\)

C.

\(\frac{1}{9}\)

D.

9

Correct answer is A

\(\frac{\sqrt{5}(\sqrt{147} - \sqrt{12}}{\sqrt{15}}\)

\(\frac{\sqrt{5}(\sqrt{49 \times 3} - \sqrt{4 \times 3}}{\sqrt{5 \times 3}}\)

\(\frac{\sqrt{5}(7\sqrt{3} - 2\sqrt{3}}{\sqrt{5} \times \sqrt{3}}\)

\(\frac{\sqrt{3} (7 - 2}{\sqrt{3}}\)

= 5

1,654.

If log104 = 0.6021, evaluate log1041/3

A.

0.3011

B.

0.9021

C.

1.8063

D.

0.2007

Correct answer is D

log1041/3 = 1/3 log104

= 1/3 x 0.6021

= 0.2007

1,655.

Simplify \(\frac{3^{-5n}}{9^{1-n}} \times 27^{n + 1}\)

A.

32

B.

33

C.

35

D.

3

Correct answer is D

\(\frac{3^{-5n}}{9^{1-n}} \times 27^{n + 1}\)

\(\frac{3^{-5n}}{3^{2(1-n)}} \times 3^{3(n + 1)}\)

\(3^{-5n} \div 3^{2(1-n)} \times 3^{3(n + 1)}\)


\(3^{-5n - 2(1-n) + 3(n + 1)}\)


\(3^{-5n - 2 + 2n + 3n + 3}\)

\(3^{-5n + 5n + 3 - 2}\)

\(3^{1}\)

= 3