100112 + *****2 + 111002 + 1012 = 10011112
11112
110112
101112
110012
Correct answer is B
Convert the binary to base 10 and they convert back to base two
100112 + xxxxx2 + 111002 + 1012 = 10011112
(1 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 1 × 20) + xxxxx2 +(1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 0 × 20) + (1 × 22 + 0 × 21 + 1 × 20)
= (16 + 0 + 0 + 2 + 1) + xxxxx2 + (16 + 8 + 4 + 0 + 0 ) + (4 + 0 + 1)
=(64 + 0 + 0 + 8 + 4 + 2 + 1)
19 + xxxxx2 + 33 = 79
xxxxx2 + 52 = 79
xxxxx2 = 79 − 52
xxxxx2 = 2710
\( \begin{array}{c|c}
2 & 27 \\
\hline
2 & 13 \text{ rem 1}\\
2 & 6 \text{ rem 1}\\
2 & 3 \text{ rem 0}\\
2 & 1 \text{ rem 1}\\
& 0 \text{ rem 1}\\
\end{array}\uparrow \)
2710 = 110112
Therefore xxxxx2 = 2710 = 110112
1.35
1.353
1.455
0.455
Correct answer is C
log717
= [log 17 ÷ log7]
= [1.2304 ÷ 0.8451]
[100.0899 ÷ 101.9270]
= 1.455(antilog)
N14,950.50K
N25,150.30K
N15,000.00K
N38,888.90K
Correct answer is D
[Return ÷ Investment] as a ratio ;
i.e The Ratio is Return : Investmen
[(Return1÷ Investment1 ) = (Return2÷ Investment2)]
R1 = N 25000
R2 =?
I1 = N450,000,
I1 = N 700000
(25000 ÷ 450000) = (R2 ÷ 700000)
R2 = [(25000 × 700000 ) ÷ 450000]
= N38,888.90K
∴ The return on a investment of Y = N38888.90K
−3 < x < \(\leq\)3
−2< x < \(\leq\)5
2< x < \(\geq\) −5
−1< x \(\geq\) \(\leq\)2
Correct answer is B
S = {0, 1, 2, 3, 4, 5}
T = {− 1, 0, 1, 2}
S \(\cup\) T = {− 1, 0, 1, 2, 3, 4, 5 }
⇒ − 2 < x ≤ 5
1458
1485
1345
1258
Correct answer is A
1st G.P. = a =2
2nd G.P. = ar\(^{2 −1}\) = 54
2(r) = 54
r = 54/2 = 27
r = 27
3rd term = ar\(^2\) = (2) (27)\(^2\)
2 × 27 × 27
= 1458