11112
110112
101112
110012
Correct answer is B
Convert the binary to base 10 and they convert back to base two
100112 + xxxxx2 + 111002 + 1012 = 10011112
(1 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 1 × 20) + xxxxx2 +(1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 0 × 20) + (1 × 22 + 0 × 21 + 1 × 20)
= (16 + 0 + 0 + 2 + 1) + xxxxx2 + (16 + 8 + 4 + 0 + 0 ) + (4 + 0 + 1)
=(64 + 0 + 0 + 8 + 4 + 2 + 1)
19 + xxxxx2 + 33 = 79
xxxxx2 + 52 = 79
xxxxx2 = 79 − 52
xxxxx2 = 2710
227213 rem 126 rem 123 rem 021 rem 10 rem 1↑
2710 = 110112
Therefore xxxxx2 = 2710 = 110112
Simplify: x2−5x−14x2−9x+14 ...
If x is positive, for what range of values of x is 4 + 3x < 10?...
Evaluate (1/2 - 1/4 + 1/8 - 1/16 + ...) - 1 ...
If a positive integer, list the values of x which satisfy the equation 3x - 4 < 6 and x - 1 > 0...
If 3y = 243, find the value of y....
If x is a real number which of the following is more illustrated on the number line? ...
Find the range of values of x for which 7x - 3 > 25 + 3x ...