A sales boy gave a change of N68 instead of N72. Calculate his percentage error
4%
5\(\frac{5}{9}\)%
5\(\frac{15}{17}\)%
7%
Correct answer is B
% error = \(\frac{error}{\text{actual value}} \times 100\)
error = N72 - N68 = 4
actual value = N72
%error = \(\frac{4}{72} \times 100\)
= \(\frac{100}{18} = \frac{50}{9}\) = 5\(\frac{5}{9}\)%
If \(\sqrt{50} - K\sqrt{8} = \frac{2}{\sqrt{2}}\), find K
-2
-1
1
2
Correct answer is D
\(\sqrt{50} - K\sqrt{8} = \frac{2}{\sqrt{2}}\)
\(\sqrt{50} - \frac{2}{\sqrt{2}}\) = K\(\sqrt{8}\)
= \(\sqrt{2} \times 25 - \frac{2}{\sqrt{2}}\)
= K \(\sqrt{4 \times 2}\)
\(\frac{5\sqrt{2}}{1} - \frac{2}{\sqrt{2}}\) = 2K\(\sqrt{2}\)
\(\frac{5\sqrt{4} - 2}{\sqrt{2}} = 2K\sqrt{2}\)
\(\frac{10 - 2}{\sqrt{2}} = 2K \sqrt{2}\)
\(\frac{8}{\sqrt{2}} = \frac{2K\sqrt{2}}{1}\)
= 2k\(\sqrt{2} \times \sqrt{2}\) = 8
2k \(\sqrt{4}\) = 8
2k x 2 = 8
4k = 8
k = \(\frac{8}{4}\)
k = 2
If Un = n(n2 + 1), evaluate U5 - U4
18
56
62
80
Correct answer is C
Un = n(n2 + 1)
U5 = 5(2 + 1)
= 5(25 + 1)
= 5(26) = 130
U4 = 4(42 + 1) = 4(16 + 1)
= 4(17) = 68
U5 - U4 = 130 - 68
= 62
Simplify \(\frac{1\frac{7}{8} \times 2\frac{2}{5}}{6\frac{3}{4} \div \frac{3}{4}}\)
90o
4\(\frac{1}{2}\)
2
\(\frac{1}{2}\)
Correct answer is D
\(\frac{1\frac{7}{8} \times 2\frac{2}{5}}{6\frac{3}{4} \div \frac{3}{4}}\)
from numerator \(1 \frac{7}{8} \times 2 \frac{2}{5}\)
= \(\frac{15}{8} \times \frac{12}{5}\)
= \(\frac{3 \times 3}{2 \times 1} = \frac{9}{2}\)
from denominator \(6\frac{3}{4} \div \frac{3}{4}\)
= \(\frac{27}{4} \div \frac{3}{4}\)
= \(\frac{27}{4} \times \frac{4}{3}\)
= \(\frac{9 \times 1}{1 \times 1} = \frac{9}{1}\)
\(\frac{9}{2} \div \frac{9}{1} = \frac{9}{2} \times \frac{1}{9}\)
= \(\frac{1}{2}\)
In what number base is the addition 465 + 24 + 225 = 1050?
ten
nine
eight
seven
Correct answer is D
No explanation has been provided for this answer.