WAEC Mathematics Past Questions & Answers - Page 118

586.

Given that n(p) = 19, m(P \(\cup\) Q) = 38 and n(P \(\cap\) Q) = 7, Find n(C)

A.

26

B.

31

C.

36

D.

50

Correct answer is A

n(P \(\cup\) Q) = m(P \(\cap\) C)

38 = 19 = n(C) - 7

n(C) = 38 - 12

= 26

587.

G varies directly as the square of H, If G is 4 when H is 3, find H when G = 100

A.

15

B.

25

C.

75

D.

225

Correct answer is A

G \(\alpha\) H2

G = KH2

4 = K(3)2

4 = 9k; K = \(\frac{4}{9}\)

100 = \(\frac{4}{9}H^2\)

4H2 = 900

H2 = \(\frac{900}{4}\)

H2 = 225

H = \(\sqrt{225}\)

H = 15

588.

If \(\sqrt{72} + \sqrt{32} - 3 \sqrt{18} = x \sqrt{8}\), Find the value of x

A.

1

B.

\(\frac{3}{4}\)

C.

\(\frac{1}{2}\)

D.

\(\frac{1}{4}\)

Correct answer is C

\(\sqrt{2} + \sqrt{32} - 3\sqrt{18} = x\sqrt{8}\)

= \(\sqrt{36 \times 2} + \sqrt{16 \times 2} - 3\sqrt{2 \times 9}\)

= x\(\sqrt{2 \times 4}\)

= 6\(\sqrt{2} + 4\sqrt{2} - 9\sqrt{2} = 2 \times \sqrt{2}\)

\(\sqrt{2} (6 + 4 - 9) = 2x\sqrt{2}\)

\(\sqrt{2} = 2x \sqrt{2}\) divide both sides by \(\sqrt{2}\)

\(\frac{\sqrt{2}}{\sqrt{2}} = \frac{2 \times \sqrt{2}}{\sqrt{2}}\)

1 = 2x

2x = 1

x = \(\frac{1}{2}\)

589.

Simplify \(\frac{m}{n} + \frac{(m - 1)}{5n} = \frac{(m - 2)}{10n}\) where n \(\neq\) 0

A.

\(\frac{m - 3}{10n}\)

B.

\(\frac{11m}{10n}\)

C.

\(\frac{m + 1}{10n}\)

D.

\(\frac{11m + 4}{10n}\)

Correct answer is B

\(\frac{m}{n} + \frac{(m - 1)}{5n} - \frac{(m - 2)}{10n}\); \(\frac{10m + 2(m - 1) - 1(m - 2)}{10m}\)

= \(\frac{10m + 2m - 2 - m + 2}{10n}\)

= \(\frac{10m + 2m - m - 2 + 2}{10n}\)

= \(\frac{11m}{10n}\)

590.

The graph represents the relation y = xo2 - 3x - 3. Find the value of x for which x2 - 3x = 7

A.

-1.55, 4.44

B.

1.55, -4.55

C.

-1.55, -4.55

D.

1.55, 4.55

Correct answer is A

x2 - 3x = 7

x2 - 3x - 7 = 0

What can you add to both sides of the equation to give the same value of y = x2 - 3x - 3

The number is 4

x2 - 3x - 7 + 4 = 4

x2 - 3x - 3 = 4

but y = x2 - 3x - 3

y = 4; So are y = 4 draw a line parallel to x axis, to cut or intersect the graph. At these points look down to see the corresponding values on x axis

This give -1.55 and 4.55