WAEC Mathematics Past Questions & Answers - Page 129

641.

A rectangle has length xcm and width (x - 1)cm. If the perimeter is 16cm. Find the value of x

A.

3\(\frac{1}{2}\)cm

B.

4cm

C.

4\(\frac{1}{2}\)cm

D.

5cm

Correct answer is C

l = x; b = x - 1

perimeter = 2(l + b) = 16

l + b = \(\frac{16}{2}\) = 8

l + b = 8

x + x - 1 = 8

2x = 8 + 1

2x = 9

x = \(\frac{9}{2}\)cm

x = 4\(\frac{1}{2}\)

642.

If sin 3y = cos 2y and 0o \(\leq\) 90o, find the value of y

A.

18o

B.

36o

C.

54o

D.

90o

Correct answer is A

sin 3y = cos 2y, but sin \(\theta\) = cos(90 - \(\theta\))

sin 3y = cos(90 - 3y)

cos(90 - 3y) = cos 2y

90 - 3y = 2y

5y = 90

y = \(\frac{90}{5}\)

y = 18o

643.

Simplify 2\(\sqrt{3}\) - \(\frac{6}{\sqrt{3}} + \frac{3}{\sqrt{27}}\)

A.

1

B.

\(\frac{1}{3}\sqrt{3}\)

C.

2\(\sqrt{3} - 5\frac{2}{3}\)

D.

6\(\sqrt{3}\) - 17

Correct answer is B

2\(\sqrt{3}\) - \(\frac{6}{\sqrt{3}} + \frac{3}{\sqrt{27}}\)

= 2\(\sqrt{3} - \frac{6}{\sqrt{3}} + \frac{3}{\sqrt{9 \times 3}}\)

= 2\(\sqrt{3} - \frac{6}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} + \frac{3}{3\sqrt{3}}\)

= 2\(\sqrt{3} = 6 \frac{\sqrt{3}}{3} + \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}\)

= 2\(\sqrt{3} - 2\sqrt{3} + \frac{\sqrt{3}}{3}\)

= \(\frac{\sqrt{3}}{3} = \frac{1}{3} \sqrt{3}\)

644.

\(\begin{array}{c|c} \text{No. of pets} & 0 & 1 & 2 & 3 & 4 \\ \hline \text{No. of students} & 8 & 4 & 5 & 10 & 3\end{array}\) The table shows the number of pets kept by 30 students in a class. If a student is picked at random ftom the class. What is the probability that he/she kept more than one pet?

A.

\(\frac{1}{5}\)

B.

\(\frac{2}{5}\)

C.

\(\frac{3}{5}\)

D.

\(\frac{4}{5}\)

Correct answer is C

pr. (More than one pet)

= \(\frac{\text{No. of students with > 1 pet}}{\text{total no. of students}}\)

= \(\frac{5 + 10 + 3}{30}\)

= \(\frac{18}{30}\)

= \(\frac{3}{5}\)

645.

Given that \(\frac{5^{n +3}}{25^{2n -3}}\) = 5º, find n

A.

n = 1

B.

n = 2

C.

n = 3

D.

n = 5

Correct answer is C

\(\frac{5^{n +3}}{25^{2n -2}}\) = 5o

\(\frac{5^{n + 3}}{5^{2(2n - 3)}}\) = 5o

n + 3 - 4n + 6 = 0

-3n + 9 = 0

-3n = -9

n = \(\frac{-9}{-3}\)

n = 3